SmartAnswer – Development of Intelligent Material Solutions for Vibro-acoustic transmissions problems. F. Pires^{1,2}, C. Claeys^{1,2}, E. Deckers^{2,3}, W. Desmet^{1,2}

1: KU Leuven, Department of Mechanical Engineering; 2: DMMS Lab, Flanders Make; 3: KU Leuven, Diepenbeek Campus, Mechanical Engineering Technology TC

Smart Mitigation of flow-induced Acoustic Radiation and Transmission for reduced Aircraft, surface traNSport, Workplaces and wind enERgy noise

Host institution

KU LEUVEN

Partnership

(Left) Irreducible Brillouin contour and wave space (Right) Dispersion diagram.

Experimental results

Motivation

- Enhancement of noise and vibration harshness (NVH) behavior is crucial due to increasing customer expectations and stricter regulations regarding human exposure to noise and vibrations.
- Aerodynamic excitation of flexible and lightweight structures leads to unwanted NVH behavior.

Turbulent boundary-layer (TBL) flow past a flat plate [1] [2].

Main Objective

Investigate the potential of locally resonant metamaterials to reduce flowinduced noise and vibrations.

Test case

Vibrations

• Vibrations due to TBL excitation measured in 72 points by Scanning Laser Doppler Vibrometer (SLDV).

PSD velocity response of the flat plate with and without metamaterials. **Noise radiation**

 Hard-walled backing-cavity mounted over the TBL-excited flat plate.

- Steel flat plate with dimensions 150 x 200 x 0.5 mm:
 - mounted flush as a side wall of a duct,
 - boundary conditions: clamped along its boundaries,
 - excited by roots blower in a small wind tunnel 5m upstream,
 - $-V_{\infty} = 19 \text{ m/s}; \text{ Re} = 19614; \text{ Mach} = 0.05.$

Steel flat plate attached to the duct piece (Left) Idealized (Right) Realized.

 Addition of resonant structures on a subwavelength scale to create stop band behavior and equivalent mass structures as benchmark. Coupled backed-cavity plate system (Left) Idealized (Right) Realized.

 Noise radiation due to the plate's vibrations into the backing cavity measured by a set of 2 microphones

Conclusions

Locally resonant metamaterials show a strong potential to improve

Unit cell (UC) with (Left) Resonant structure (Right) Non-resonant equivalent mass structure.

- Resonant structures tuned frequency: 800 Hz.
- 56 UCs on the finite plate: 27% mass addition.
- Stop band opens for bending waves between 766.2 Hz and 837 Hz.

flow-induced noise and vibrations on targeted frequency ranges in a mass efficient manner.

- Outperforms the equivalent mass case:
 - additional 22 dB vibration reduction,
 - additional 11 dB noise reduction.

References

[1] Dewan, Anupam. Tackling turbulent flows in engineering. Springer Science & Business Media, 2010.

[2] Camussi, Roberto, ed. Noise sources in turbulent shear flows: fundamentals and applications. Vol. 545. Springer Science & Business Media, 2013.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 722401.