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General introduction

Acoustic Control
And Materials



Part 1: Development of Intelligent 
Lightweight Material Solutions for Improved 

Vibro-Acoustic Transmission Problems

Felipe Alves Pires
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NVH challenges

Noise, Vibration and Harshness challenges 
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Ecological trend
Reducing emissions

Reducing fuel consumption

Lightweight design

Worse NVH properties

Novel NVH solutions
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Metamaterials

Vibro-acoustic metamaterials
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Metamaterials

Vibro-acoustic metamaterials
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f2

f3

f1

mass

spring

TVA: Tuned vibration 
absorber

Resonant inclusions on a 
subwavelength scale

(2)Liu, Z., et al. "Locally resonant sonic materials." science 289.5485 (2000).

HOW?Stop bands
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Vibro-acoustic metamaterials

• Stop band prediction
Bloch-Floquet Theorem

Unit cell modeling utilizing a FE approach 

Metamaterials
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(3)Goffaux, C., et al. Evidence of Fano-like interference phenomena in locally resonant materials. Physical review letters 88.22 (2002).
(4)Brillouin, L. Wave propagation in periodic structures: electric filters and crystal lattices. Courier Corporation, 2003c.
(5)Hussein, I. Reduced Bloch mode expansion for periodic media band structure calculations. Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences. The Royal Society, 2009.
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Metamaterials
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Objectives

Investigate design parameters that influence stop bands
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Footprint of resonators

9



Methodology

 Infinite and Finite problems

• Using modified TVAs   

Infinite Finite
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Footprints

0% 20% 40%

60% 80%

20% mass addition

Change stiffness

X

Y
Z
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Numerical Results

Infinite Plates

Unit cell: 60 x 60 mm
Bigger footprint
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 Stop bands width x Footprint

- fres = 2000 Hz

Numerical Results
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Numerical Results

Finite Plates
Displacements

Simply supported
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Fahy, Frank J., and Paolo Gardonio. Sound and structural vibration: radiation, transmission and response. Elsevier, 2007.
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 RMS Displacements

 Resonators tuned to 2000 Hz

Numerical Results
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Experimental Validation
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 Finite aluminum beams:

Experimental validation

Material properties of aluminum.
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Point of excitation
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 Resonators with different footprints:

Experimental validation

Material properties of plexiglass.
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 Resonators with different footprints:

Experimental validation

Resonators features numerically acquired.
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 Realized resonators with different footprints:

Experimental validation

Samples of laser cut resonators (Left) Type 1 (Right) Type 2.

Test set up to retrieve the resonance frequency of the resonators.
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Comparison between the simulated and measured resonance frequencies 
for the 2 types of resonators.
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 Predicted stop bands:

Experimental validation
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 Comparison of FRFs of the metamaterial beams:

Experimental validation

Comparison of experimental FRFs for the bare beam and the beams with 
resonators.
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Concluding remarks 

 Novel NVH solution;

 Resonance based stop bands;

 Influence of footprint:

• Stop bands’ widths;

• Experiments comply with numerical study;

• Footprint of resonators need to be taken into account.
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Future steps

 Experimentally investigate the footprint concept in 2D finite structures

 Structural vibrations

 Insertion Loss (IL)

 Design and produce a metamaterial fuselage panel as a demonstrator;

 Test and validate the metamaterial panel on the fuselage setup at ADE.
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Part 2: Liner Impedance Control, 
Stability investigations

Emanuele De Bono
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Ultra-High Bypass Ratio turbofan
engines

Y. Auregan (LAUM)

AIAA
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Acoustic Liners for Turbofan

Credits: SAFRAN Nacelles; Karkar et al., Internoise 2015
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State of the art in Industrial Application

Main limitations: 
• Narrow bandwidth. 
• Too thick for LF (quarter wavelength

resonators)

Need for: 
• Wideband concept
• Efficient at lower frequencies
• Reasonable thickness (50mm)

SAFRAN Nacelles
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State of the art in Research

Slow
Sound

Can be efficient for 

“Acoustic Metamaterials”

Flow

Credits: Y. Auregan (LAUM)
Subwavelength structures

29



Proposed Active Concept

SAFRAN

Microphones

Electronic card

Speaker
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Summary

The distributed impedance control law:
• Theoretical stability.
• The diode effect.

Local Impedance Control: stability issue.

Conclusions.
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The distributed impedance control law

Collet et al. JASA 2009

𝒗(𝑥, 𝑡)

Control Law on the Boundary:

𝑥

𝑧

→ Evanescent waves toward  x>0

−𝜌
𝜕𝒗 𝑥, 𝑡

𝜕𝑡
=
𝜕𝑝

𝜕𝑥
−
1

𝒄𝒂

𝜕𝑝

𝜕𝑡

𝑝

Loudspeakers
Microphones

Acoustic domain

𝛻2 −
1

𝑐0
2

𝜕2

𝜕𝑡2
𝑝 = 0
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Summary

The distributed impedance control law:
• Theoretical stability.
• The diode effect.

Local Impedance Control: stability issue.

Conclusions.
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The distributed impedance control law: 
Theoretical Stability
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 Open Field Propagation Stability

ො𝑛 ∙ 𝛻𝑝 𝑥,0,𝑡 =
𝜕𝑝

𝜕𝑥
𝑥, 0, 𝑡 −

1

𝒄𝒂

𝜕𝑝

𝜕𝑡
𝑥, 0, 𝑡

𝛻2 −
1

𝑐0
2

𝜕2

𝜕𝑡2
𝑝 𝑥, 𝑦, 𝑧, 𝑡 = 0

Acoustic Domain 𝑥, 𝑧 ∈ −∞, 0 × −∞, 0

ො𝒛 = ෝ𝒏

ෝ𝒙o

𝑾𝒃 = 𝑅𝑒 𝑣(𝑧=0) 𝑝(𝑧=0)
∗ =

1

𝜌𝜔
𝑹𝒆 𝒌𝒛𝟏 𝑝1

2 + 𝑝1𝑝2
∗ + 𝑹𝒆 𝒌𝒛𝟐 𝑝2

2 + 𝑝2𝑝1
∗

𝒌𝒛𝟐 =
𝜔

2𝑐𝑎
1 − 2

𝑐𝑎
2

𝑐0
2 − 1𝒌𝒛𝟏 =

𝜔

2𝑐𝑎
1 + 2

𝑐𝑎
2

𝑐0
2 − 1

𝑷𝒐𝒘𝒆𝒓 𝒆𝒙𝒄𝒉𝒂𝒏𝒈𝒆𝒅 𝒂𝒕 𝒕𝒉𝒆 𝒃𝒐𝒖𝒏𝒅𝒂𝒓𝒚

This problem has an analytical solution 
in the frequency domain in terms of the 
unkown wave numbers.

Negative for 𝒄𝒂 > 𝒄𝟎
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The distributed impedance control law: 
Theoretical Stability
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𝜕𝑅𝑒𝑎𝑙 𝑘𝑥
𝜕𝜔

∙ 𝐼𝑚𝑎𝑔 𝑘𝑥 ≥ 0

𝒄𝒂 = 𝑐0

∞

ො𝑛
∞

𝑘𝑥

 Duct mode Propagation Stability

Frequency domain:
𝑝(𝑥, 𝑦, 𝑧, 𝜔, 𝑡) = 𝑝 (𝑦, 𝑧, 𝜔)𝑒−𝑗𝜔𝑡+𝑗𝑘𝑥𝑥

𝜕𝑅𝑒𝑎𝑙 𝑘𝑥
𝜕𝜔

𝐼𝑚𝑎𝑔{𝑘𝑥}

0

𝒄𝒂 = 0.9 𝑐0𝒄𝒂 = 1.01 𝑐0

Wave Stability Criteria
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 Cavity Mode Stability

𝒑 = ෝ𝒑 𝒆−𝝀𝒕

If  𝑹𝒆 𝝀 < 𝟎 System Unstable

Root locus of 𝜆, varying 𝑐𝑎

Cavity mode unstable for 𝑐𝑎 > 𝑐0

The distributed impedance control law: 
Theoretical Stability
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Summary

The distributed impedance control law:
• Theoretical stability.
• The Diode Effect.

Local Impedance Control: stability issue.

Conclusions.
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Dispersion curves relative to 
sectional duct modes

𝒄𝒂 = 𝑐0

Backward Propagating 
plane wave

Forward Propagating 
plane wave (missing)

∞

ො𝑛
∞

𝑘𝑥

The distributed impedance control law:
The Diode Effect
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A distributed impedance control law:
the Diode Effect

Acoustic Diode effect

WITH JUST ONE CELL!!!

𝒑𝒊𝒏𝒄

𝒑𝒊𝒏𝒄
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UNEXPECTED INSTABILITY 
in the EXPERIMENTAL APPLICATION

• Increasing the number of cells easily brought about instability... 

• We need to do a step back… we need to take into account the 
time delay in the application of the control itself.

Digital 
Signal 

Processor

𝑝𝑚𝑒𝑎𝑠
Signal 

Amplifier
ADC

Numerical
Control

𝒊 = 𝐻 𝑝𝑚𝑒𝑎𝑠

Current
Amplifier

DAC

𝒊

𝛿𝑡1 𝛿𝑡2

𝛿𝑡3𝛿𝑡4

𝝉 =

𝒊

𝜹𝒕𝒊
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Summary

The distributed impedance control law:
• Theoretical stability.
• The diode effect.

Local Impedance Control: stability issue.

Conclusions.

Current work
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Local Impedance Control:
STABILITY ISSUE

• We will analyze now the Local Impedance Control, which the 
Distributed Impedance Control idea stems from. The Distributed
Impedance Control is just an extension of the Local Impedance
Control.

𝑖 𝜔 = 𝐻𝑙𝑜𝑐 𝜔 𝑝 + 𝐻𝑑𝑖𝑠𝑡 𝜔
𝛿𝑝

𝛿𝑥

• Therefore, first thing is to analyze the Stability of the Local Control. 
If the Local Impedance Control is not stable, the Distributed
Impedance Control has no chance to be stable!!!
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Local Impedance Control:
STABILITY ISSUE

 What happens if we consider a delay in the application of the Local Impedance Control?

𝝉 =

𝒊

𝜹𝒕𝒊

A
b

so
rp

ti
o

n
 C

o
ef

fi
ci

en
t

Normal Absorption 
Coefficient negative
above 3kHz!!!!

Frequency [Hz]
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Local Impedance Control:
STABILITY ISSUE

 What happens if we consider a delay in the application of the Local Impedance Control?
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Local Impedance Control:
STABILITY ISSUE
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Summary

The distributed impedance control law:
• Theoretical stability.
• The diode effect.

Local Impedance Control: stability issue.

Conclusions.

Current work
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Conclusions

 The condition for the Acoustic domain to be stable if coupled with a Distributed Impedance Controlled
liner, has been assessed through analytical and numerical analyses. They retrieved the same result: a 
limit on the artificial celerity coefficient 𝑐𝑎 ≤ 𝑐0.

 The diode effect has been shown numerically and experimentally, but the tests have shown clear
instability.

 The first reason of instability has been found in the application of the Local Impedance Control, on which
the Distributed Impedance Control is rooted.

 The instability of the Local Control has been explained numerically by the delay in the digitally-
implemented Control chain. Experimental tests have confirmed the validity of this conclusion.
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Current Work

 Test and optimize different Control Law, 
stabilizing the system by the application 
of a porous layer in front of the cells.

 Synthesize a robust Control Law through
Advanced Automatic Control techniques 
based upon the 𝐻∞ method. It will take
into account the delay from the beginning
of the Control design.
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Part 3: Gradient metamaterials,

MDOF oscillator and wave-conversion liner

Thomas LAURENCE
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Generalities about interfaces 
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Generalities about interfaces 

Interaction with an interface of specific impedance ∶

Zs = 𝑅𝑠 + 𝑗𝑋𝑠 =
𝑝

𝑣
compared to the specific impedance of the fluid 𝑍𝑐 = 𝜌0𝑐0

 Reflection coefficient in normal incidence:

𝑅 =
𝑍𝑠 − 𝑍𝑐
𝑍𝑆 + 𝑍𝑐

 Absorption coefficient:
𝛼 = 1 − 𝑅2

𝑝𝑖

𝑝𝑟
= 𝑅𝑝𝑖

𝑣

𝑍𝑠

𝑝𝑡
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Generalities about interfaces 

Snell-Descartes Law (SDL):

sin 𝜃𝑖 + sin 𝜃𝑟 = 0

Valid for an homogeneous impedance

What happens for a controlled 
inhomogeneous impedance ?

How can we create an inhomogeneous
impedance ?

53



M24 SmartAnswer Mid-term Meeting Leuven

Multiple Degrees Of Freedom Oscillator

 MDOF sensor-based shunted loudspeaker

Current equation (Newton): 
𝑍𝑚𝑣 = 𝑆𝑑𝑝 − 𝐵𝑙𝑖

Can be tuned to a target specific impedance
by adjusting 𝑖 = Φ 𝑝 :

𝜱 =
𝑺𝒅

𝑩𝒍
𝟏 −

𝒁𝑴

𝑺𝒅𝒁𝒔
gives the specific impedance 𝑍𝑠

Offers the possibility to have an inhomogeneous
impedance

Active resonator, can be changed on the fly

Virtually any impedance is achievable

Source: [Rivet, Thesis]

54



M24 SmartAnswer Mid-term Meeting Leuven

Generalized Snell Descartes Law

 Gradient-based metamaterials :

Gradient property over the material (for example a surface)

 Helical wavefront generation,
abnormal reflection…

 Phase gradient metasurfaces : 
wave manipulators.

 Based on generalized SDL
with a reflection phase 𝜓 :

𝑠𝑖𝑛𝜃𝑖 + 𝑠𝑖𝑛𝜃𝑟 = −
1

𝑘

𝝏𝝍

𝝏𝒙

𝜃𝑟2
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Generalized Snell Descartes Law

 Gradient-based metamaterials :

They mostly use passive cells.

Could we combine this approach and MDOF active oscillators ?
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MDOF target impedance

 Definition of the target impedance 𝑍𝑠 with a criteria on the reflection coefficient 
phase, and implementation of the control law Φ.

 Frequency shift of the resonators along the surface :
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MDOF target impedance

 The phase target is exactly met !
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Wave redirection

Metasurface plane

 First simple application : anomalous reflection (standard application in the litterature).

 Good simulation results, over a large frequency band.

 Need for experimental results.
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• Condition from generalized SDL:

sin 𝜃𝑟 ≤ 1 ⟺
Δ𝜓𝑚
𝑘𝑑

− 1 ≤ sin 𝜃𝑖 , 𝜃𝑖∈ [−90°, 0°]

 No reflection for a given incidence and a given phase gradient !

With an optimized
gradient, in a duct:
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• Condition from generalized SDL:

sin 𝜃𝑟 ≤ 1 ⟺
Δ𝜓𝑚
𝑘𝑑

− 1 ≤ sin 𝜃𝑖 , 𝜃𝑖∈ [−90°, 0°]

 No reflection for a given incidence and a given phase gradient !

With an optimized
gradient, in a duct:
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Real life applications
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Part 4: Flow-acoustics interaction

With innovative materials 

Massimo D’Elia
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Introduction

Flow-Acoustic Interaction 
with 
Innovative Materials
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Introduction

Flow-Acoustic Interaction 

Flow-Acoustic interactions over 
small cavities: 
Application to corrugated pipes

First Step:

Industrial interest of  
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• Experimental investigation: Microphones measurement, 

Laser Doppler Velocimetry

• Extraction of a linear model

Introduction

Flow-Acoustic interactions over small cavities: 
Application to corrugated pipes
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Acoustic Transmission

With flow 
Acoustic Transmission

𝑙

𝑊

𝜎 = 𝑊/𝑙
𝑒 = 𝑑/𝑙

𝑑

𝑊 = 4 mm
𝑑 = 4 mm, 𝑙 = 12 mm

𝑈0

Corrugated wall

p+

R p+ T p+

𝑆 = 40 x 50 mm 
𝐿 = 200 mm
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Acoustic Transmission

Oscillations: 

• Oscillations of transmission 
coefficients with flow

• Frequency of oscillations 
dependent on flow velocity: 
constant 𝑆𝑟

With flow 
Acoustic Transmission

Without flow With flow

f = 2 kHz 
St = 0.4

19.02.2019 M24 SmartAnswer Mid-term Meeting Leuven 68



LDV Setup
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LDV Technique
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v

λs2, fs2

isλs1, fs1 fs1 = f0 + V/λ0(is- is1)
fs2 = f0 + V/λ0(is- is2)

fD = fs1 – fs2 =  V/λ0(is2- is1)

Retrieved velocity: 𝑉 = 𝑣𝑚𝑒𝑎𝑛 + 𝑣𝑓 + 𝑣𝑡
Sum of average, fluctuating and turbulent components

Fluctuating component can be retrieved either by phase-locked measurements or 
by least-square approach (chosen method)
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Geometrical restrictions: 
acquisition in two steps and 
tilt

As we are interested in the vorticity shed by the cavities, we measured 1 mm 
inside the (fourth) cavity and around 1.3 mm above, with a step of 0.10 mm 
(machine resolution). 

Corrugated pipe  - LDV Measurements
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By looking at the velocity phase right above the cavity, we can find a very clear linear behaviour. 
From this, we can then obtain the shed vorticity traveling velocity, which, when traced down in black on 
the left figure, coincide pretty well with the vorticity core. 

𝑣𝑓 = 𝑉𝑓 𝑒
−𝑖𝑘𝑊 → k =

𝑎𝑛𝑔𝑙𝑒 𝑣𝑓

𝑊
→ 𝜆𝑡 =

2𝜋

𝑘
𝑐𝑡 = 𝜆𝑡𝑓 = 9.25 𝑚/𝑠

Corrugated pipe  - LDV Measurements
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Acoustic power calculation

• In presence of Flow -> Acoustic power can be produced.

This can be obtained by Howe energy corrolary:

Ρ = −ම
Ω

𝜌0 𝜔 × 𝑉 ∙ 𝑢𝑎 𝑑Ω

• First term of integral retrieved by measurements. 

• As acoustic component cannot be isolated, 𝑢𝑎 is computed numerically (and magnitude matched 
away from cavity, where solely acoustic component is present and measured)

where 𝜔 is the flow vorticity, V is the flow velocity and 𝑢𝑎 is the acoustic velocity
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Mean vorticity + Fluctuating Vorticity

This can be obtained by Howe energy corrolary:

Ρ = −ම
Ω

𝜌0 𝜔 × 𝑉 ∙ 𝑢𝑎𝑐𝑜 𝑑Ω

where 𝜔 is the flow vorticity, V is the flow velocity and 𝑢𝑎 is the acoustic velocity

Acoustic power calculation
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Acoustic Power 

This can be obtained by Howe energy corrolary:

Ρ = −ම
Ω

𝜌0 𝜔 × 𝑉 ∙ 𝑢𝑎𝑐𝑜𝑑Ω

where 𝜔 is the flow vorticity, V is the flow velocity and 𝑢𝑎𝑐𝑜 is the acoustic velocity

Acoustic power calculation
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Furthermore, such power such be related to the Transmission coefficient variations seen in the T-R 
measurements.

From T-R measurements, the non-dimensional acoustic power is: 

𝑃𝑎𝑑𝑖𝑚 = 1 +𝑀 2 + 1 −𝑀 2
𝑝2
−

𝑝1
+

2

− 1 +𝑀 2
𝑝2
+

𝑝1
+

2

− 1 −𝑀 2
𝑝1
−

𝑝1
+

2

𝑆 ≈ 1 − T+ 2 − R+ 2 𝑆

Padim, wFlow = 2.75 10-5

Padim,No Flow = 9.16 10-5

∆𝑃𝑎𝑑𝑖𝑚 = 6.41 10
_5

𝑃𝐿𝐷𝑉 = 7.07 10
_5

Integrating the measured power over 
measurement slice (x depth and number
of cavities over test section), we obtain:

PLDV = 7.07 10-5

Acoustic Power Measurement: Microphone vs LDV 
measurements
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Conclusions

In contrast to the whistling case, measurements in the linear domain of corrugations
show that the vorticity is distributed over the entire opening of the corrugation.

In the linear regime, the vorticity is proportional to the sound velocity and the sound
power provided by the flow is proportional to the square of the velocity.

In the linear regime, the vorticity remains approximately constant along the opening.
There is no evidence of instability in the shear layer.

I have shown that it is possible to extract the sound power provided by the flow from
LDV measurements.

A simplify model in the linear regime can be deduced from the LDV measurements

⇒ Interesting results that will be soon published in a journal
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Future Works

Oscillating massFlexible
arms

Cavity

Micro-slitEffect of flow on 
innovative absorbers
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Micro-slit systems: Leakage = Resistance
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Part 5: Non-linear system identification

in aeroacoustics

Niloofar Sayyad Khodashenas
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Perforate Plate

Application of perforates

 Automotive mufflers 
 Aircraft engines linear
 Combustion chambers
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 Mean flow field
 Temperature
 Acoustic excitation level 

Noise control properties depend on 
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Perforate Plate
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 Acoustic excitation level 

The amplitude related to the

high particle velocity 

produces the non-linear phenomena

Perforated plate
Acoustic particle velocity amplitude through the hole

Sound wave 
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Main objective

 To study the non-linearity phenomenon at the perforated plate which is associated

with large particle velocities.

 The non-linear acoustic properties including harmonic interaction from experiments

using either random or periodic excitation
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Experiment Setup
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 Pipe
Microphones
 Loudspeaker
 Perforated sample
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Model and Assumptions
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Experiment 
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Non-linear is the
peak acoustic velocity in the hole 

𝑢𝐻 ≈ 𝑢𝑁 / 𝜎

f 

3f

Excitation frequency

Excitation frequency
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Result

S3f,f

is the scattering coefficient from
an incident frequency

to the third harmonic of that frequency 

InversStrouhal-number 

A
b

s(
S 3

f,
f)

𝑢𝐻 ≈ 1/ 𝑆 = u(f)//t

S3f,1f =
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Future work

 Perform experiment 

 Collect time data using both random and tonal excitation

 Analyze phase relation between harmonics for different  types of excitation

 Compare non-linear scattering matrix results obtained using tonal and broadband excitation

 Analyze data using other non-linear system identification techniques
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Thank you for your 
attention !
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